November 3, 1998

Name

Technology used: _____

Textbook/Notes used:

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. **Only write on one side of each page.**

The Problems

- 1. Let T and L be transformations from R^n to R^n . Suppose that L is the inverse of T. If T is a **linear** transformation, show that L is closed under addition. (That is, show that L satisfies the first part of **Fact 2.2.1.**)
- 2. The plane 3x + 2y + z = 0 is a subspace, V, of \mathbb{R}^3 .
 - (a) Find a matrix A so that $V = \ker(A)$.
 - (b) Find a matrix B so that V = Im(B).
- 3. Let V be the subspace of R^4 spanned by $\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$. Find a basis for V^{\perp} .
- 4. What is an **orthonormal basis** for V^{\perp} in the previous question?
- 5. Suppose \overrightarrow{v}_1 , \overrightarrow{v}_2 , \overrightarrow{v}_3 is a linearly independent set in R^5 . Is the set of vectors $2\overrightarrow{v}_1 + \overrightarrow{v}_2 + 3\overrightarrow{v}_3$, $\overrightarrow{v}_2 + 5\overrightarrow{v}_3$, $3\overrightarrow{v}_1 + \overrightarrow{v}_2 + 2\overrightarrow{v}_3$ linearly dependent or independent?
- 6. Let V and W be two subspaces of \mathbb{R}^n . Show the intersection $V \cap W$ is also a subspace?
- 7. Let V and W be two subspaces of \mathbb{R}^n . Define

$$V + W = \{ \overrightarrow{v} + \overrightarrow{w} \in \mathbb{R}^n : \overrightarrow{v} \in V \text{ and } \overrightarrow{w} \in W \}.$$

Show that V + W is a subspace of \mathbb{R}^n .

8. Let $\overrightarrow{v}_1, \ldots, \overrightarrow{v}_m$ be a basis for a subspace V of \mathbb{R}^n . Show that if $\overrightarrow{x} \in \mathbb{R}^n$ satisfies

$$\overrightarrow{v}_i \cdot \overrightarrow{x} = 0$$
, for all $i = 1, \dots, m$

then $\overrightarrow{x} \in V^{\perp}$. That is, \overrightarrow{x} is perpendicular to **every** vector in V.

9. Is there an orthogonal linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ for which

$$T\begin{bmatrix} -2\\0\\4 \end{bmatrix} = \begin{bmatrix} 4\\2\\0 \end{bmatrix} \quad \text{and} \quad T\begin{bmatrix} 4\\0\\2 \end{bmatrix} = \begin{bmatrix} 2\\0\\-4 \end{bmatrix}?$$

- 10. If A is an $n \times n$ symmetric, invertible matrix must A^{-1} also be symmetric?
- 11. Suppose $T: R^n \to R^m$ is a linear transformation with $\ker(T) = \{\overrightarrow{0}\}$. Show that if $\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3$ are linearly independent in R^n then $T(\overrightarrow{v}_1), T(\overrightarrow{v}_2), T(\overrightarrow{v}_3)$ are also linearly independent.