November 3, 1998 | Name | |------| Technology used: _____ Textbook/Notes used: **Directions:** Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. **Only write on one side of each page.** ## The Problems - 1. Let T and L be transformations from R^n to R^n . Suppose that L is the inverse of T. If T is a **linear** transformation, show that L is closed under addition. (That is, show that L satisfies the first part of **Fact 2.2.1.**) - 2. The plane 3x + 2y + z = 0 is a subspace, V, of \mathbb{R}^3 . - (a) Find a matrix A so that $V = \ker(A)$. - (b) Find a matrix B so that V = Im(B). - 3. Let V be the subspace of R^4 spanned by $\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$. Find a basis for V^{\perp} . - 4. What is an **orthonormal basis** for V^{\perp} in the previous question? - 5. Suppose \overrightarrow{v}_1 , \overrightarrow{v}_2 , \overrightarrow{v}_3 is a linearly independent set in R^5 . Is the set of vectors $2\overrightarrow{v}_1 + \overrightarrow{v}_2 + 3\overrightarrow{v}_3$, $\overrightarrow{v}_2 + 5\overrightarrow{v}_3$, $3\overrightarrow{v}_1 + \overrightarrow{v}_2 + 2\overrightarrow{v}_3$ linearly dependent or independent? - 6. Let V and W be two subspaces of \mathbb{R}^n . Show the intersection $V \cap W$ is also a subspace? - 7. Let V and W be two subspaces of \mathbb{R}^n . Define $$V + W = \{ \overrightarrow{v} + \overrightarrow{w} \in \mathbb{R}^n : \overrightarrow{v} \in V \text{ and } \overrightarrow{w} \in W \}.$$ Show that V + W is a subspace of \mathbb{R}^n . 8. Let $\overrightarrow{v}_1, \ldots, \overrightarrow{v}_m$ be a basis for a subspace V of \mathbb{R}^n . Show that if $\overrightarrow{x} \in \mathbb{R}^n$ satisfies $$\overrightarrow{v}_i \cdot \overrightarrow{x} = 0$$, for all $i = 1, \dots, m$ then $\overrightarrow{x} \in V^{\perp}$. That is, \overrightarrow{x} is perpendicular to **every** vector in V. 9. Is there an orthogonal linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ for which $$T\begin{bmatrix} -2\\0\\4 \end{bmatrix} = \begin{bmatrix} 4\\2\\0 \end{bmatrix} \quad \text{and} \quad T\begin{bmatrix} 4\\0\\2 \end{bmatrix} = \begin{bmatrix} 2\\0\\-4 \end{bmatrix}?$$ - 10. If A is an $n \times n$ symmetric, invertible matrix must A^{-1} also be symmetric? - 11. Suppose $T: R^n \to R^m$ is a linear transformation with $\ker(T) = \{\overrightarrow{0}\}$. Show that if $\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3$ are linearly independent in R^n then $T(\overrightarrow{v}_1), T(\overrightarrow{v}_2), T(\overrightarrow{v}_3)$ are also linearly independent.